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Abstract A fast and accurate procedure is proposed for solution of the two-
dimensional unsteady heat conduction equation used in the transient short-hot-wire
method for measuring thermal conductivity. Finite Fourier transforms are applied
analytically in the wire-axis direction to produce a set of one-dimensional ordinary
differential equations. After discretization by the finite-volume method in the radial
direction, each one-dimensional algebraic equation is solved directly using the tri-
diagonal matrix algorithm prior to application of the inverse Fourier transform. The
numerical procedure is shown to be very accurate through comparison with an analyti-
cal solution, and it is found to be an order of magnitude faster than the usual numerical
solution.
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1 Introduction

Transient hot-wire methods for measuring thermal conductivity are based on the
principle that the transient temperature change of a fine wire, suddenly heated by
a constant current, depends on the thermal properties of the surrounding fluid. The
wire itself serves as both the heater and a resistance thermometer, and measurements
are taken within a short time to avoid the effects of natural convection. The conven-
tional transient hot-wire method is widely considered as the state-of-the-art technique
for measurement of thermal conductivities of fluids. However, it requires a relatively
large sample and two wires of different lengths to correct for end effects [1,2]. An alter-
native to the conventional method, known as the transient short-hot-wire method [3],
uses one short wire and a numerical technique to solve the two-dimensional unsteady
heat conduction equation. This method has the advantage that the apparatus is simpler
than the conventional method, but has a disadvantage that additional calculation time
and effort is required to ensure that numerical errors do not reduce the accuracy of the
determined thermal conductivity and thermal diffusivity.

Recently, our group developed a procedure for application of the transient
short-hot-wire method to data where the temperature rise of the wire does not form
a straight line when plotted against the logarithm of time [4]. In order to determine
the thermal conductivity via an iterative non-linear least-squares fitting procedure,
the unsteady two-dimensional heat conduction equation must be solved 6–18 times.
The numerical solution of the two-dimensional heat conduction equation is the time-
consuming part of the procedure. Iteration is also required in solving the discretized
equations themselves, and thus a convergence criterion must be employed. Since this is
a possible source of discrepancy in the evaluation of the thermal properties, it is desir-
able to have a fast method of solving the two-dimensional heat conduction equation
where iteration is not required.

In the method we propose in this article, a finite Fourier transform changes the
two-dimensional problem into a set of one-dimensional problems. After discretiza-
tion, the set of one-dimensional equations can be solved by direct inversion each
time step using the tri-diagonal matrix algorithm (TDMA). Thus, no iteration is
needed for an accurate solution of the two-dimensional unsteady heat conduction
equation.

The proposed solution method has some features in common with the analytical
solutions for heated cylindrical wires as described in Refs. [5] and [6]. The analytical
solutions also employ finite Fourier transforms in the axial direction. However, these
solutions become complicated through the analytical treatment of the radial and time
derivatives. Moreover, they cannot be extended easily to coated wires. The novelty
of this procedure is that it keeps the flexibility of a numerical solution in the radial
direction while still taking advantage of the increased calculation speed through an
analytical treatment in the axial direction.
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2 Mathematical Formulation

2.1 Physical Model

The object of this method is to solve Eq. 1a subject to the initial and boundary condi-
tions given by Eqs. 1b and c, respectively:

ρc ∂T
∂t = 1

r
∂
∂r

(
rλ∂T

∂r

) + λ∂2T
∂z2 + Q (1a)

T |t=0 = T |r=R = T |z=0 = 0 (1b)

∂T
∂z |z=L/2 = 0 (1c)

where T is the temperature rise of the sample (r > r0) or the hot wire (r < r0), ρc
is the volumetric heat capacity, t is the time, z is the axial direction, r is the radial
direction, R is the radius of the cell, L is the length of the wire, and λ is the thermal
conductivity. The power from Joule heating, Q, is defined in Eq. 2 where q is the heat
supplied per unit heater length per unit time;

Q = q/πr2
0 (r ≤ r0 and t ≥ 0)

= 0 (r > r0 or t < 0) (2)

The properties of the domain vary according to Eqs. 3 and 4 where r0 is the radius
of the wire and the subscript, w, stands for the wire while the subscript, s, is for the
sample;

λ|r≤r0 = λw, λ|r>r0 = λs (3)

ρc|r≤r0 = ρwcw, ρc|r>r0 = ρscs (4)

A schematic diagram of Eqs. 1–4 is given in Fig. 1.

2.2 Fourier Transform in Axial Direction

Equation 1 is written such that it is valid for changes in properties in the radial direc-
tion but not in the axial direction. This assumption allows us to apply a finite Fourier

Fig. 1 Physical model
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transform in the z direction. Thus we can make use of the following finite Fourier
transform:

f̄ (z) =
L/2∫

0

sin (mnz) f (z) dz (5)

mn = 2n − 1

L
π, n = 1, 2, 3. . . (6)

The inverse Fourier transform is given by

f (z) = 4

L

∞∑

n=1

sin (mnz) f̄ (z) (7)

Applying Eq. 5 to Eqs. 1a, b, and c and assuming properties do not vary in the z
direction, we obtain

ρc ∂ T̄n
∂t = 1

r
∂
∂r

(
rλ∂ T̄n

∂r

)
− λm2

n T̄n + Q
mn

(8a)

T̄n|t=0 = 0 (8b)

T̄n|r=R = 0 (8c)

Note that the two-dimensional unsteady problem given by Eq. 1 is now N
one-dimensional unsteady problems given by Eq. 8 where n = 1, N .

2.3 Numerical Discretization in Time and Radial Direction

Equation 8a is discretized using the finite-volume method [7] with central differencing
for the first term on the right and a fully implicit scheme for the unsteady term on the
left. The term −λm2

n T̄n in Eq. 8a is treated implicitly while the term Q/mn is treated
as an explicit source term. This results in a tri-diagonal matrix. Thus, Eq. 8 can be
solved very quickly without iteration for different values of ‘n’ using the well-known
TDMA. Contrary to Ref. [7], in this study, we have used node-centered control vol-
umes. The formulation is a little more complicated than the cell-centered approach,
but it avoids some ambiguity in the treatment of thermal conductivity at the boundary
between the wire and the fluid sample. Details of our discretization method are given
in the Appendix.

2.4 Inverse Fourier Transform

Having obtained a sufficiently large number of values of T̄n , the temperature (see
Eq. 7) at any position is given by
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T (r, z, t) = 4

L

∞∑

n=1

sin (mnz) T̄n (r, t) (9)

The average temperature in the wire at time, t , is given by Eq. 10 where we have
integrated Eq. 9 from z = 0 to L/2 and from r = 0 to r0 and then divided by the
volume of the wire. Note that the Fourier series has been truncated to N terms;

Tw (t) = 8

L2

N∑

n=1

1

mn

2

r2
0

r0∫

0

T̄n (r, t) rdr (10)

3 Extensions to the Procedure

3.1 Modification for a Constant-Current Supply

In the previous section, the Joule heating per unit length of the wire, q, is treated as a
constant value. This is the usual assumption for the transient hot-wire method [1–4],
but it is not necessary to limit the present procedure to this assumption. Actually, in the
practical apparatus, a constant-current source is typically used. The present procedure
can easily be reformulated for a constant current. In order to do this, q in Eq. 2 is
replaced by

q = I 2 R0C (1 + βT0)

L
+ I 2 R0Cβ

L
T (11)

where I is the electrical current, R0C is the resistance of the wire at 0 ◦C, β is the
resistance coefficient for the wire, and T0 is the bath temperature at the start of the
experiment. Substituting Eq. 11 into Eq. 1a and applying the finite Fourier transforms
gives

ρc
∂ T̄n

∂t
= 1

r

∂

∂r

(
rλ

∂ T̄n

∂r

)
− λm2

n T̄n + I 2 R0C (1 + βT0)

πr2
0 Lmn

+ I 2 R0Cβ

πr2
0 L

T̄n (12)

As per the recommendation of Ref. [7] concerning positive and negative source
terms in the finite-volume method, the last two terms on the right-hand side of Eq. 12
are discretized explicitly by taking the value of T̄n from the previous time step. Thus,
for the case of a constant current, Eq. 12 should be solved in place of Eq. 8a.

3.2 Application to Wires with Protective Coatings

This procedure can be extended easily for application to a wire covered by a pro-
tective coating such as that which was used in Ref. [8]. To apply the finite Fourier
transforms to Eq. 1, it is only necessary that the thermal conductivity and heat capacity
do not vary in the axial direction. There is no restriction on property variation in the
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radial direction. Therefore, the conditions in Eqs. 3 and 4 can easily be changed to the
following:

λ|r≤r0 = λw λ|r0<r≤rc = λc λ|r>rc = λs (13)

ρc|r≤r0 = ρwcw ρc|r0<r≤rc = ρccc ρc|r>rc = ρscs (14)

where the subscripts, w, is for the heating element, c is for the coating, and s is for the
sample.

4 Demonstration of the Procedure

4.1 Calculation Speed and Accuracy for Application to Gas with High Thermal
Diffusivity

It is worthwhile to consider fluids with both high and low thermal diffusivities since
the wire temperature-rise characteristics are quite different for the extremes of thermal
diffusivity [4]. Table 1 gives a comparison of this procedure with the two-dimensional
finite-volume method where both are applied for simulation of a short wire surrounded
by hydrogen gas at atmospheric pressure. For this example, the properties of the sam-
ple were taken to be λ = 0.183 W · m−1 · K−1, α = 1.525 × 10−4 m2 · s−1, and of the
wire λw = 71.6 W · m−1 · K−1, αw = 2.51 × 10−5 m2 · s−1. Low-pressure hydrogen
gas was selected as an extreme case of a high thermal-diffusivity fluid. The electrical
current to the wire was 15 mA, corresponding to a heating power of 0.29504 W · m−1.
The cell geometry is included in Fig. 2. Calculations were performed for three differ-
ent values of N corresponding to the number of terms in the Fourier series in Eq. 10.
The first grid space in the fluid in the radial direction is 0.27 times the radius of the
wire, and subsequent grid spaces increase in size according to a geometric progression.
Time steps also increase geometrically from a first step of 50 µs in the same manner
as explained in Ref. [4]. Calculations were done on a Pentium D personal computer
with 3-GHz clock speed. The calculation time in Table 1 includes the time taken to
write the output into the hard disk.

From Table 1 it is clear that for this example, N = 50, in this method results in
a similar accuracy to the 2D finite-volume method with Nz = 38. For this case, the
calculation time taken in this method is less than one-tenth of that taken in the 2D

Table 1 Comparison with 2D finite-volume method for H2 gas

Nr Nt Calculation time (s) Steady state T (K) T (K) at t = 0.1 s

2D FVM (Nz = 38) 320 1800 152 1.64442 1.61619

Present N = 50 320 1800 11 1.64458 1.61632

Present N = 100 320 1800 15 1.64467 1.61642

Present N = 200 320 1800 28 1.64468 1.61643

2D Analytical [5] – – – 1.64539 1.61722
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Fig. 2 Volume-averaged wire
temperature rise for hydrogen
gas
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finite-volume method. The analytical solution [5] to the same problem (but neglect-
ing the radial temperature gradient in the wire) is also listed in Table 1. The steady-
state numerical results are all within 1 mK of the analytical solution. Moreover, the
results of this method are slightly closer to the analytical solution than those of the 2D
finite-volume solution. Differences between the numerical and analytical solutions
can be reduced even further by increasing the number of points in the radial direction
and increasing the number of time steps.

Figure 2 shows the volume-averaged temperature rise for the four numerical simula-
tions considered in Table 1. It is difficult to distinguish between the four cases as should
be expected based on the results shown in Table 1. Figure 3 shows the result of calculat-
ing the temperature distribution in the sample with Eq. 9 (the number of terms is N =
100) and the result from the 2D finite-volume method. The maximum difference in tem-
perature rise between the two distributions in Fig. 3 is 5.9 × 10−3 K while the average
absolute difference is 0.1 × 10−3 K. The maximum difference between the two distri-
butions occurs at r = 0 and z = 0.025 mm, which is the first z-grid point in the wire.

Since the temperature distribution in the wire itself has a direct influence on the
resistance measurement, it is also worthwhile to confirm the absence of significant
oscillations from the finite-Fourier series. Figure 4 shows the temperature distribu-
tion along the axis of the wire calculated using this method and the 2D finite-volume
method. The average absolute difference at grid points along the wire axis is about
0.6×10−3 K which is slightly larger than the difference in the volume averages shown
in Table 1. Temperature oscillations along the wire greater than the order of 1 mK are
absent. Thus, Figs. 2–4 verify the accuracy of this procedure when applied to a high
thermal-diffusivity gas.

4.2 Performance for a Fluid with Low Thermal Diffusivity

The thermal diffusivity of liquids such as toluene and water is several orders of mag-
nitude lower than that of hydrogen gas at atmospheric pressure. This has the effect
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Fig. 3 Comparison of
steady-state temperature
distribution using Eq. 9
with 2D FVM
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Fig. 4 Steady-state temperature
distribution along the axis of the
wire

z, mm

T
em

p
er

at
u

re
 r

is
e,

 K

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Present
2D FVM

H2, 20 °C, 0.1013 MPa
10 µµm Pt wire
L = 13 mm
R = 15 mm
Steady-state distribution

that only a small region very close to the wire is heated during an experiment, and
thus the boundary conditions at the cell walls become irrelevant. Table 2 shows a
comparison between this method, the 2D finite-volume method, and an analytical
solution for the case of liquid toluene at 20 ◦C. Properties of toluene were taken to be
0.1324 W · m−1 · K−1 and 9.124 × 10−8 m2 · s−1 for thermal conductivity and ther-
mal diffusivity, respectively. The heating power (0.29504 W · m−1) and computational
grids were the same as those used for hydrogen gas above. Again, the agreement
between this method and the 2D finite-volume method is within 1 mK at the sam-
ple points for all the cases considered. The results from the analytical solution are
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Table 2 Comparison with 2D finite-volume method for liquid toluene

Nr Nt Calculation time (s) T (K) at t = 1 s T (K) at t = 0.1 s

2D FVM (Nz = 38) 320 1800 66 1.54808 1.15909

Present N = 50 320 1800 11 1.54815 1.15913

Present N = 100 320 1800 15 1.54824 1.15923

Present N = 200 320 1800 28 1.54826 1.15924

2D Analytical [5] – – – 1.54940 1.16042

Fig. 5 Volume-averaged wire
temperature rise for liquid
toluene
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about 1.2 mK greater than the numerical results. A comparison between Tables 1 and
2, shows that the calculation times for this method are unchanged. This should be
expected since this procedure does not require iterations for convergence. The 2D
finite-volume solution converges faster for toluene (66 s) than for hydrogen (152 s).
Even then, this procedure still indicates a significant improvement to the calculation
time.

Figure 5 shows the wire temperature rise for the cases listed in Table 2. In con-
trast to the case for hydrogen in Fig. 2, Fig. 5 shows a linear relationship between
the temperature rise and the logarithm of time. For hydrogen gas, the wire tempera-
ture reaches a steady state due to the effects of the cell wall boundary. This effect is
not seen in the case of toluene because of the much smaller thermal diffusivity. The
good agreement among the various calculations over the entire transient temperature
rise in Fig. 5 is consistent with the results reported in Table 2. It is worth mentioning
that the analytical solution in Ref. [5] is most suitable for fluids with high thermal
diffusivity and for large values of t . In the case of Fig. 5 for t < 1 ms, 2000 terms
per eigenvalue were required for the analytical solution to converge. This is a further
motivation for the use of this procedure in preference to the analytical solution in
Ref. [5].
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4.3 Effect of Constant-Power Assumption

Usually, in the transient hot-wire method it is assumed that throughout the duration of
the experiment the power to the wire remains constant. However, in the actual exper-
iment a constant-current source is normally used. In the case of a constant current,
the resistance of the wire changes slightly as the temperature increases and thus the
power increases slightly with time. In Sect. 3.1 we showed that the present numerical
solution can be altered easily for the case of a constant current. If the temperature rise
is less than 1 K, the change in the resistance of a platinum wire is less than 0.4 %.
(Note that for high-purity platinum, β ≈ 0.0039 K−1). The effect on the thermal-
conductivity measurement is smaller than this if the time-averaged resistance is used
to specify the power. Occasionally, transient hot-wire data appear in the literature
where the temperature rise is greater than 5 K. Therefore, we will consider such a case
here in order to represent an upper limit used in practical measurements.

Figure 6 shows the simulated wire temperature rise in hydrogen gas for a constant
current of 40 mA in a transient short-hot-wire cell with a 10 µm diameter platinum
wire. For comparison, constant-power simulations are done using the time-averaged
resistance (dashed line) and the initial resistance (dashed-dotted line) to estimate the
power per unit length. We can see from Fig. 6 that even in the case of a temperature rise
of about 8 K, the constant-current and constant-power curves are in good agreement
if the average power is used. The largest difference between the average-power result
and the constant-current result is about 0.077 K at t ≈ 1.5 ms. For the steady-state
condition the difference is 0.0056 K. On the other hand, if the initial resistance is used
to estimate the power, the maximum difference is 0.24 K and an error of the order of
3 % in thermal conductivity could result for this case. Thus, we may conclude that
the main advantage of using Eq. 12 (i.e., constant current) is to avoid ambiguity in
specification of the power to the wire.

Fig. 6 Effect of constant-power
assumption
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Fig. 7 Coated-wire simulation
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4.4 Coated Wires

As mentioned above, the transient short-hot-wire method has been applied to measure-
ment of electrically conducting fluids by application of a layer of Al2O3 on the surface
of the wire [8]. In order to demonstrate the validity of the present procedure for such
application, Fig. 7 shows simulation results of the volume-averaged wire temperature
rise for a platinum wire with and without an Al2O3 coating. For this example, the
test fluid was water at 20 ◦C, 0.1013 MPa, with IAPWS recommended properties as
formulated in NIST’s software REFPROP [9]. The properties of the coating have a
large degree of uncertainty as a result of the sputtering procedure. For this simulation,
the thermal conductivity and thermal diffusivity of the Al2O3 coating were assumed
to be 36 W · m−1 · K−1 and 11.9 × 10−6 m2 · s−1, respectively. The present method
was implemented as described above in Sect. 3.2. For this case as shown in Fig. 7, the
coating has the effect of reducing the temperature rise. Again, the simulations using the
2D finite-volume discretization differ by less than 1×10−3 K from the corresponding
results using the present procedure.

5 Limitations of the Present Model

The numerical technique described in this article is limited to thermal-conductivity
cells where the geometry can be approximated such that the boundary conditions at
z = 0 and z = L/2 do not vary with r . Moreover, properties cannot vary in the z-direc-
tion. This may seem a little restrictive but the models usually used for the transient
short-hot-wire method satisfy all of these conditions [3,8]. Moreover, the model out-
lined in this article has been used with considerable success for the measurement of the
thermal conductivities of liquids [3,8,10]. However, it should be noted that due to dif-
ficulties in the construction of a short-hot-wire cell, the physical model in Fig. 1 is not
a perfect representation of geometry used in practice for the transient short-hot-wire
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method. It is also difficult to measure the length of the wire with an optical microscope
due to uncertainties about the weld attachment positions on the lead terminals [3]. In
order to overcome this problem and to compensate for any differences between the
model and the experiment, the transient short-hot-wire method is usually treated as
a secondary method. The cell constants are an effective wire length and an effective
diameter that are determined via calibration measurements in a reference fluid such
as liquid water or toluene where the properties are well known [3,8]. For liquids, the
sample is heated only in the region very close to the wire. For high-diffusivity gases
such as low-density hydrogen, however, the heated region extends all the way to the
cell wall, as is evident from the steady-state condition reached in Fig. 2. Therefore, we
may expect that model differences with respect to details of the cell geometry in the
lower and upper parts of the cell far from the wire will be more significant for gases
than for liquids. Thus, it is important to mention that calibration in a fluid with similar
properties may be required if the present physical model is applied to low-density
gases.

6 Conclusions

This proposed method is a useful modification to the calculation procedure for the
transient short-hot-wire method. Not only is the calculation time reduced but also
some numerical convergence issues are avoided through direct inversion of the alge-
braic equations using the TDMA. It is also applicable to coated wires and to constant-
current power sources.

Acknowledgments This research has been conducted as a part of the “Fundamental Research Project
on Advanced Hydrogen Science” funded by the New Energy and Industrial Technology Development
Organization (NEDO).

Appendix

Numerical Discretization in the Radial Direction

Since the node-centered finite-volume treatment used in the present article is a little less
common than the cell-centered approach, it is worthwhile to give a brief description
of the procedure used here. The goal is to discretize the following equation:

ρc
∂ T̄n

∂t
= 1

r

∂

∂r

(
rλ

∂ T̄n

∂r

)
− λm2

n T̄n + Q

mn

In order to simplify the notation, let Ti be the value of the Fourier transform of the
temperature at the position r = ri ;

Ti ≡ T̄n|r=ri
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Fig. 8 One-dimensional
numerical grid definitions
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Figure 8 gives a schematic diagram of a single control volume. The solid circles
show the positions at which the temperature (i.e., Fourier transform of the tempera-
ture) is evaluated while the dashed lines show the positions at which the properties are
specified. The dotted lines also correspond to the boundaries of the control volume.
Note that the dotted line is halfway between two solid circles, but the solid circles are
not necessarily halfway between the two dotted lines. In order to be generic, the left
part of the control volume is taken to have different properties to the right part of the
control volume. This is illustrated by the shading in Fig. 8. The discretized equation
for the node i becomes

ρi−1/2ci−1/2π
(
r2

i − ((ri + ri−1)/2)2)

�t

(
Ti − T ′

i

)

+ ρi+1/2ci+1π
(
((ri+1 + ri )/2)2 − r2

i

)

�t

(
Ti − T ′

i

)

+ λi−1/2m2
nπ

(
r2

i − ((ri + ri−1)/2)2
)

Ti

+ λi+1/2m2
nπ

(
((ri + ri+1)/2)2 − r2

i

)
Ti

− (
Qi−1/2/mn

)
π

(
r2

i − ((ri + ri−1)/2)2
)

− (
Qi+1/2/mn

)
π

(
((ri + ri+1)/2)2 − r2

i

)

+ 2π
(ri + ri−1)

2

λi−1/2

ri − ri−1
(Ti − Ti−1)

− 2π
(ri+1 + ri )

2

λi+1/2

ri+1 − ri
(Ti+1 − Ti ) = 0 (A1)
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�t is the numerical time step, and T ′
i is the temperature at grid point i at the end of

the previous time step. It is also worth mentioning that double floating point precision
was used in the computer program to implement this solution.
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